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Abstract—In this paper, we consider the low autocorrelation
sequence design problem. We optimize a unified metric over a gen-
eral constraint set. The unified metric includes the integrated side-
lobe level (ISL) and the peak sidelobe level (PSL) as special cases,
and the general constraint set contains the unimodular constraint,
Peak-to-Average Ratio (PAR) constraint, and similarity constraint,
to name a few. The optimization technique we employ is the
majorization-minimization (MM) method, which is iterative and
enjoys guaranteed convergence to a stationary solution. We carry
out the MM method in two stages: in the majorization stage, we
propose three majorizing functions: two for the unified metric and
one for the ISL metric; in the minimization stage, we give closed-
form solutions for algorithmic updates under different constraints.
The update step can be implemented with a few Fast Fourier Trans-
formations (FFTs) and/or Inverse FFTs (IFFTs). We also show the
connections between the MM and gradient projection method un-
der our algorithmic scheme. Numerical simulations have shown
that the proposed MM-based algorithms can produce sequences
with low autocorrelation and converge faster than the traditional
gradient projection method and the state-of-the-art algorithms.

Index Terms—Sequence design, low autocorrelation, unified
framework, majorization minimization.

I. INTRODUCTION

EQUENCES with low autocorrelation sidelobes enjoy a
S wide range of applications in wireless communications and
signal processing. Some important engineering applications in-
clude Code-Division Multiple Access (CDMA) cellular systems
[1], radar systems, security systems, and even cryptography
systems [2]. We define x 2 {z,})_, € CV as a complex-
valued sequence of length /N. Our objective is to design a se-
quence whose autocorrelation sidelobes are jointly at a low level.
The aperiodic and periodic autocorrelations of the sequence x
are given as

N—k
re= Y ), =17 (aperiodic) )
n=1
and
N
T = TnT{pipy(modN) = T (periodic) 2)
n=1
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for k=0,1,--- , N — 1. Usually, the sequence to be designed
has a limited energy budget, so we fix the sequence energy
without loss of generality.

A. Related Work

In order to measure the goodness of the autocorrelation side-
lobes of a sequence, researchers have put forward various met-
rics. One example is the integrated sidelobe level (ISL)

N-1
ISL=3 |rf*, (3)
k=1
or equivalently the merit factor (MF) [3]
2 4
MFE 0 _ ||X||2 ( 4)

ey nf® o 2L

With the sequence energy fixed, maximizing the MF is equiva-
lent to minimizing the ISL. As an extension to the ISL, Stoica
et al. [4] also proposed the Weighted ISL (WISL) metric

N-1
WISL = )~ wy ||, 5)
k=1

where {wy, }‘2’:_11 are the nonnegative weights. This metric is

useful when the r;’s are not equally important and we want to
suppress some . ’s in particular. Another example of the popular
metrics is the peak sidelobe level (PSL)

PSL = k:l_IQI,I?T},(N—l {|rk|} . (6)

Both the ISL and PSL can be viewed as the p-norm of |ry|’s
with (6) as the limit of large p, and thus these two metrics can
be unified.

In practice, there are many constraints to be considered apart
from the aforementioned energy budget constraint. In terms of
modulus, [4]-[6] have mentioned the constant modulus (uni-
modular, to be accurate) constraint, and [7]-[9] handled PAR
constraint. In terms of phase, [10] focused on the polyphase
constraint, and [11], [12] studied the similarity constraint. Phase
constraints are imposed together with the constant modulus con-
straint.

There is a rich literature on finding low autocorrelation se-
quences. The existing construction methods are either analyt-
ical or computational. Using analytical methods, we are able
to construct sequences with closed-form expressions, such as
the Frank sequences [13], the Chu sequences [14], and the
Golomb sequences [15]. Traditional computational methods
are either based on search algorithms (exhaustive search or
stochastic search) or evolutionary algorithms. They become
computationally expensive when the sequence length goes up
to a few thousand. In addition, the evolutionary algorithms are
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heuristic methods in nature whose convergence is not guaran-
teed. To summarize, the existing sequence construction methods
cannot effectively design extremely long sequences (up to 10%)
with very low autocorrelation, and that is why modern optimiza-
tion techniques are desperately needed.

Recently, a number of optimization-oriented approaches [4],
[16]-[18] have been put forward to design long sequences with
low autocorrelation sidelobes. Among them, the Cyclic Algo-
rithm New (CAN) algorithm [4] enjoys a satisfactory perfor-
mance in producing unimodular sequences of length up to sev-
eral million. Rather than minimizing the ISL, the CAN algorithm
minimizes a simpler but “almost equivalent” metric, changing
the quartic objective function to a quadratic one. When it comes
to the WISL metric, there is no simple “almost equivalent” re-
formulation available. Hence, as is shown in [4], the Weighted
CAN (WeCAN) algorithm performs much worse than CAN.

B. Contribution

The major contributions of this paper (with respect to [5], [6])

lie in the following three aspects.

1) The first contribution is that we propose a unified frame-
work to design low autocorrelation sequences, which
provides a global perspective for the sequence design
problem. In terms of the objective, we unify the existing
ISL, WISL, and PSL metrics; in terms of the constraint,
we consider the constant modulus constraint, PAR con-
straint, polyphase constraint, similarity constraint, and so
on. We can solve the sequence design problem in a uni-
fied manner instead of dealing with each metric and each
constraint separately in a specific way.

2) The second contribution is that we systematically apply
the Majorization Minimization (MM) method [19]. We
carry out the MM method in two separate stages: ma-
jorization function construction and minimization solu-
tion derivation. In the majorization stage, we construct a
total of three majorizing functions. Two of them apply to
the unified metric, and the remaining one, which is not
mentioned in [5], [6], applies to the more specific ISL
metric. Its achieved ISL level is as good as the other two
majorizing functions, and the convergence speed is the
fastest, 2—4 times as fast as the second fastest, according
to the simulation results. In the minimization stage, we
provide efficient closed-form solutions to the minimiza-
tion problems depending on the constraints. The mini-
mization stage is by nature solving a projection problem,
which is not pointed out in [5], [6]. We maintain that the
whole MM process is more than a simple combination of
existing works. Furthermore, the MM update step can be
implemented with a few FFT (IFFT) operations which are
highly efficient.

3) The third contribution is that we establish the connec-
tions between the MM and gradient projection method
under our algorithmic scheme, which is very insightful.
The update step of the MM method has exactly the same
structure as that of the gradient projection method.
However, the MM method is still superior because of the-
oretical stationarity convergence guarantee. Apart from
that, the MM method has faster convergence speed than
the gradient projection method, as can be seen in the
simulation results.

C. Organization and Notation

The rest of the paper is organized as follows. In Section II, we
introduce the problem formulation. In Section III, a brief pre-
liminary description of the MM method is given. In Sections IV
and V, we construct majorization functions and derive mini-
mization solutions, respectively. In Section VI, we show the
connections between the MM and gradient projection method
under our implementation scheme. In Section VII, we elabo-
rate on the algorithmic implementation. Finally, Section VIII
presents numerical simulations, and the conclusions are given
in Section IX.

The following notation is adopted. Boldface upper-case let-
ters represent matrices, boldface lower-case letters denote col-
umn vectors, and standard lower-case letters stand for scalars.
R (C) denotes the real (complex) field. |-| denotes the absolute
value. ||-[|, denotes the p-norm of a vector. V (-) represents the
gradient of a vector function (the way to derive the complex-
valued gradient follows [20]). I stands for the identity matrix.
X;; denotes the (i, j)th element of the matrix X. X”, X*, X
Tr (X), Amax (X), Amin (X), and vec (X)) denote the transpose,
complex conjugate, conjugate transpose, trace, the largest eigen-
value, the smallest eigenvalue and stacking vectorization of X,
respectively. Diag (x) is a diagonal matrix with x filling its
principal diagonal and diag (X) is the vector consisting of all
the diagonal elements of matrix X. Finally, ® stands for the
Hadamard product.

II. PROBLEM STATEMENT

A. Objective Function

We propose a unified metric named Weighted Peak or Inte-
grated Sidelobe Level (WPISL) as follows:

N-1
WPISL = >~ wy, [r [, @)
k=1

where 2 < p < +o0, and {wk}fy;ll are nonnegative weights.
This metric readily includes the ISL (or WISL) and the PSL as
special cases: let p = 2, and we get the WISL metric; further
let w, = 1, Yk, and we get the ISL metric; let p — +o00 and

N-1 P 1/p .
wy, = 1, Vk, and we get (Zk:l |7 | ) — maxy {|r¢|},ie.,
the PSL metric.

B. Constraints of Interest

We have already introduced the energy budget constraint,
i.e., ||x[5 = ¢ (constant). Besides that, some additional con-
straints may also be of interest, as are described in the following.

1) Strict Constant Modulus Constraint: In [4]-[6], strict
constant modulus constraint or, in particular, strict unimodu-
lar constraint is of interest due to the limitations of hardware
components and/or efficiency of amplifiers [21]. This constraint
is expressed as: forn =1,2,--- | N,

|xn] = ¢ = (constant, specially¢,, =1). (8)

Ce
VN
This constraint is denoted as (' for short.

2) e-Uncertainty Constant Modulus Constraint: Sometimes
the strict constant modulus constraint is too harsh and we may
want to relax the constant modulus within a small e-uncertainty
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TABLE I
MISCELLANEOUS CONSTRAINTS AND THEIR NOTATIONS

Modulus Constraint Index Phase Constraint Index
Strict constant modulus constraint Ch Discrete phase constraint Cy
e-Uncertainty constant modulus constraint Co Similarity constraint Cs
PAR constraint Cs

region, which is: forn =1,2,--- | N,

Cm — €1 S‘xn|§cm+€2 (OSGI Scm70§62)- (9)
This constraint is a modest relaxation of the previous constraint
(1, and it is denoted as (' for short.

3) PAR Constraint: The signal PAR measures the ratio of
the largest signal magnitude to its average power [7]—[9]:

2
max,, |z, |

AR = Tz

; (10)

and 1 < PAR (x) < N. We require PAR (x) < p (a particu-
lar threshold), so that the analog-to-digital converters and the
digital-to-analog converters in the system can have lower dy-
namic range, and fewer linear power amplifiers are needed.
Since we have already assume ||x||, = c,, the PAR constraint
is equivalent to: forn = 1,2,--- | N,

|zn| < ¢, (constant), (11)
where ¢. /VN < ¢y < c. This constraint is more relaxed than
the previous two in that the modulus is not lower bounded.

When ¢, = ¢, /v N, the PAR constraint degenerates into strict

constant modulus constraint. When ¢, > ¢./v/N (= ¢, ), the
PAR constraint becomes a large uncertainty set around ¢,,, (¢; =
¢m and €2 = ¢, — ¢, ). This constraint is denoted as C for short.

4) Discrete Phase Constraint: Besides modulus constraints,
phase constraints are also desired. One commonly used
constraint is the discrete phase constraint, also known as
the polyphase constraint [10]. It is expressed as: for n =
17 27 e ,N >

arg($n)€{¢1,¢27"',¢[}7 (12)

where @1, ¢o, -, ¢r are I fixed angles. This constraint is de-
noted as Cj for short, and is often accompanied by the strict
constant modulus constraint C' .

5) Similarity Constraint: Sometimes we want the designed
sequence to lie in the neighborhood of a reference one
which already has good properties [11], [12]. It is written
as [|x — x|/ <9 (0 <0 <2) with x, being the reference
sequence, which is equivalent to |z, — z,,,| < J, Vn. Simi-
larly, this constraint is often accompanied by the strict constant
modulus constraint Cy, and can be further simplified as: for
n= 172a"' 7N9

arg (n) € [y, + 9], (13)
where v, = arg (., ) — arccos (1 — 6%/2), and ¥ = 2 arccos
(1 —62/2). Note that when § = 0, we get ¥ = 0, indicating
that x = x,.; when § = 2, we get ¥ = 27, and this constraint is
always satisfied. This constraint is denoted as C’5 for short.

For clarity, we summarize all the aforementioned constraints
and their notations in Table I.

C. Problem Formulation

The problem formulation consists of the minimization of the
WPISL metric in (7) subject to the constraints mentioned in
Table I, and it reads

N-1
2k=1 wr ke ()

subjectto x € X,

mini)Enize (14)

where 7, (x) = xTU}.x, for the aperiodic case, i.e., (1), Uy €
RY >N is a Toeplitz matrix with only the kth diagonal entries
being 1 and 0 elsewhere; while for the periodic case, i.e., (2), Uy,
is a Toeplitz matrix with only the kth and (k — NV)th diagonal
entries being 1 and 0 elsewhere, and
x={xec||xl=2}nmnc), a3

which means only a few C;’s are activated.

Remark 1: In the following, we focus on the aperiodic case
and the results can be easily extended to the periodic case with
minor modifications.

III. PRELIMINARIES: MAJORIZATION MINIMIZATION METHOD
In this section, we are going to briefly introduce the MM
method, and its algorithmic framework [19].

A. The MM Method

The MM method can be applied to solve the following general
optimization problem:

f(x)

subjectto x € X,

minimize
X (16)

where f is differentiable on the whole C space and & is some
constraint set. Rather than minimizing f (x) directly, we con-
sider successively solving a series of simple optimization prob-
lems. The algorithm initializes at some feasible starting point
x(9) and then iterates as x(*), x(?), ... until some convergence
criterion is met. For any iteration, say, the [th iteration, the up-
date rule is

x*) € arg mingey f (x;xm) , (17)
where f (X; x(l)) is the majorizing function of f (x) at x(¥),
which satisfies

l)f(xx )Zf()VXEX
) f(xDsx) = £ (x1).
In words, f (x x() is a tight global upper bound of f (x) in

the constraint set and also coincides with f (x) at x(*).

B. Stationarity Convergence

The MM method can guarantee convergence to a stationary
solution of (16) as long as the following two additional condi-
tions are satisfied:
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3) Vf_( (D):vf(x(l));
4 f(x; x(l ) is continuous in both x and x(")

Interested readers may refer to [22] for detailed proof
and here we only briefly mention its idea. First
note that f (X(l)) =f (x( ); x(l)) > mlnxg{f( X(l)> =
f(xFD:xD) > f(xD), from which we get f (x(V)) >
f(xM) > f(x®) >, implying the monotonicity of the
sequence { f ( )} Then assume a subsequence of {xm},
denoted by {x/)}, converges to a limit point z. Thus, for
all xe X, f(xxt)) > f(xb);xb)) > f(xb+D) >
f(xbe)) = f(xe);xie1)) Letting j — +o00, we obtain
forallx € X, f (x;x(°)) > f (x(°);x(>)), which indicates

7 (x<°O>;x<°O>,d) >0, vd € Ty (x(oc>) . 8)

where f’ stands for directional derivative and 7y (x<°°)) is the

Boulingand tangent cone of X" at x(°*). The definition of direc-
tional derivative of f in the direction d is

F () = liming L FAD =
Ao A

fx) (19)

If f is differentiable,
fectively as d’ Vf (x).

f'(x;d) can be computed ef-
Interested readers may refer to

[23], [24] for more knowledge of tangent cone. Since
Vf (x<°°);x(°o>) =Vf (x(oc>), we have [’ (x<°°);x(°o),d) =
d"Vf (x*);x(>)) =d"Vf (x(*)) = f (x(°);d). There-
fore, the limit point x(°) should satisfy

7 (x5d) 2 0, vd € T (x)) (20)

and thus x(* is a (Boulingand) stationary point.

C. Acceleration Techniques

The convergence speed of the MM method is mainly de-
termined by the majorizing function. In some cases where the
majorizing function is not well designed or cannot be better
designed, we should adopt some techniques to accelerate the
convergence speed.

1) Acceleration via SQUAREM: SQUAREM stands for
squared iterative method, which can be viewed as an “off-the-
shelf” accelerator of the MM method. It was proposed by Varad-
han and Roland [25] and is claimed to have the following two
advantages: 1) requiring nothing more than the MM variable
updating scheme, and 2) enjoying global convergence. The de-
tailed implementation of SQUAREM is shown in Algorithm 1.
To make SQUAREM better fit in the MM method, we make the
following modifications. To guarantee feasibility, we project
the infeasible points back to the constraint set by the opera-
tion Py (-). Moreover, to preserve the monotonicity of the MM
method, we adopt the strategy of backtracking, which repeatedly
halves the distance between v and —1 until the monotonicity
is achieved. To see why it works, interested readers may refer
to [6].

2) Acceleration via Local Majorization: This idea has pre-
viously shown up in [5]. As is mentioned above, the slow con-
vergence speed of the MM method is due to an ill-designed
majorizing function. An alternative acceleration technique is
to modify the ill-designed global majorizing function to a lo-
cal one. This technique can be readily applied to an objective

Algorithm 1: MM Acceleration via SQUAREM.

Require: [ = 0, the initial feasible point x(0),
1: repeat

2 xgl) = arg mingey f(x; x([));
3 xél) = arg mingey f (x;x(ll));
4 r= xgl) —x;
5: v = xg) — x(ll) —r;
6:  a=—|rly /vl
7
8

%) =Py (x(’) —2ar—|—a v);

: while f( ) > f( )
9: a = (a —-1)/2;
10: =Py (x“ — 2ar + aQV);

11: end whlle

12: xHD) =0,
13: I=1+1;

14: until convergence

Algorithm 2: MM Acceleration via Local Majorization.

Require: [ = 0, the initial feasible point x(0),

0=[L 2 ... 1]" with T being the grid size.

1: repeat

2: =1

3 %) = arg minxe fo (x; x, 6 (z)),

4: while f (xV;x",0(i)) < f (x1V) do
5: 1 =1+ 1;

6: %) = arg mingex fo (X;X(Z),9 (l)),
7:  end while

8 X(l+1) — i(l);

9 =141,
10: until convergence

function f (x) that is Lipschitz continuous on the constraint
set X. In this case, the majorizing function is naturally con-
structed as f (x;x) = £ (x0) + VI f (xV) (x —x) +
L= —x<l>H§ where L is a constant with L > Ly >0 (Ly
is the Lipschitz constant for the function f). In most situations,
Ly is very difficult to calculate and we can only derive an up-
per bound, possibly quite loose. Let fy (x;x(V,0) £ f (xV)) +
VTf (x“)) (X —x ) +6-L ||X — X([)Hj with 0 <6 <1.
It can be seen that fy (x,x“), 1) = f (x;x), and for
0<0<1, fg (x;x<l>79) is a local majorizing func-
tion. Following the argument of the monotonicity of the

MM method, we see that f( ) =fy (x(l) (Z),G) >
mmxeX fg (x xD,0) = fp (xV;xD,0) still holds, but
fo (%1 ),0) > f (x! ) may not To achieve monotonicity,

we start from a small-valued 6 and gradually increase it (up
to 1) until fp (xD;xV,0) > f (%) is satisfied. Then we set
x(*+1) = () The detailed implementation of this acceleration
technique is elaborated in Algorithm 2.

IV. MAJORIZING FUNCTION CONSTRUCTION

In this section, we are going to put forward a total of three
majorizing functions. Two of them apply to the unified WPISL
metric and the remaining one applies to the more specific ISL
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metric. It is generally preferred that the minimization of the
majorizing function has a closed-form solution. Driven by this
motivation, we construct quadratic majorizing functions so that
a closed-form solution is easily obtained.

A. Majorizing Functions for the WPISL Metric

We first study a scalar function z”. It is generally known that
an arbitrary power function z” does not have a global quadratic
majorizing function for p > 2. Howeyver, there does exist a local
one, which comes from the lemma below.

Lemma 2 ([6, Lemma 10]): Let g (x) = P with p > 2. The
function g (z;z0) = ax® + bz + ax — (p— 1)z} is a local
majorizing function of g (z) at 2y € [0, Z) on the interval [0, Z]
wherea = [z — 28 — pal ' (& — x0)]/(Z — x9)? > Oand b =
pxﬁfl — 2axy < 0. In particular, when p = 2, we get a = 1,
b=0,and g (z;29) = 2? = g (x) (no majorization).

Remark 3: Using such a local majorizing function maintains
monotonicity and will not cause infeasibihty The global min-
imizer of g (z;x() with respect to = is —5-. If p > 2, then
a >0 and b < 0, making —% nonnegatlve In addition, we
p-1

T,  —2ax 1
observe — g = — = = gy — £af < @y < T.Since

the global minimizer stlll falls within [0, x} infeasibility will not
occur.

Suppose x() is the designed sequence at the /th MM iteration,
and we want to construct a majorizing function around x(*)
for the WPISL metric. We denote f (x) £ Ziv;f wy [ry (x)[P
with r, (x) = x U, x and handle the summation term by term
using Lemma 2. We regard |ry, (x)| as « and |ry, (xV))] as
xp, obtaining (constant terms are represented with const for
simplicity)

=

-1

Wy (ak ra (X)|2 + by | (x)] + Const)7 21
1

fx)<

=~
Il

where aj, (> 0) and by, (< 0) follow the structure of a and
b in Lemma 2, and the corresponding interval upper limit
Z (just as that mentioned in Lemma 2) is different for each

wi 70 . Next, we

7_ ) 1/[1
k:z), = { (H%’E:?:11“U|TJ(X“>)V)
0 W = 0
)| > Refry.(x) - i (x)],

observe b, < 0and |ry (x)|[r_ (x)
so (recall b, < 0)

wkbk |7‘k (X)‘ S wkkae [::E::jj;'rk (X):| =

1
-X

" () (x) )
w_pb_ 7U Fwpbp U )%, (22
9 ( kV—k ‘ x >| k kVk l ( )‘ k ( )
with U_;, = Uﬁ, w_p = wy, wyg = 0 and b_j = by, by = 0.
Combining (21) and (22), we can further majorize f (x) in the
following manner:

f(x) < Zwkak [rr (x | + XHBX+COHbt
N-1
= Zwkak ‘x ka| + XHBX+CODbt (23)
k=1
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where
N-1
1)

B = Z wkbk%Uk.

k=1-N

(24)

%XH Bx, but still have

an intractable quartic term Zfev:}l Wk Ak |x 2, which is
the focus of the following majorization step. We are going to
majorize the quartic term in two different ways, obtaining two
majorizing functions eventually.

1) Majorizing via the Largest Eigenvalue: First we intro-
duce a lemma addressing how to majorize a quadratic function
by another quadratic function.

Lemma 4 ([5, Lemma 1]): Given M = My and xg, the
quadratic function x' ng is majorized by xMx +
2Re [XH (M, — M) Xo] +xtT (M — M) x¢ at xg.

With some simple transformations, the quartic term
Z};V;f Wy, A |xH ka|2 can be rewritten as

Now we already have a quadratic term

1
—vec (X)L - vec (X),

5 (25)

where

r) vecd (U_p),

N-1
Z wiagvee (U_

k=1-N

(26)

X =xx,a_; = ay, and ay = 0. It is easy to see that (25) is
quadratic in X and by applying Lemma 4 with M, = L and
M = A\ax (L) I, we can get the following result.

Lemma 5: The expression Y5 wyay [x/ Upx[?+1ix/
Bx is majorized by

1
5/\111,1X (L) ||x||3 + x1 (R — Amax (L) x(l)x(l)H> X + const,
(27)
where
_ p—2
R = Z gwk ‘rk (x(l)) ! r_p, (X(l>) U,. (28)

k=1-N

Proof: See Appendix A for the detailed proof. |

We apply Lemma 4 again on x*/ (R Amax (L) x(! H) x
with M = )\, I where )\, is chosen such that \, > Amax (R)
and finally get

xH (R — Amax (L) x(l)x(l)H) X

< Auxx -+ 2Re [x (R = Ay (L) xOx(071

— )\UI)XW] + const 29)
= A 1[5 = 2\, Re [y{ x] + const,
where
yi= (14 20 |07 0 — L Rx(! (30)
To conclude, the first majorizing function we propose is
B (x5 ) = S A (L) [+ A 2
—2X\,Re [y{{ x] + const. 31
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Remark 6: Recall that We have an energy budget constraint
x| = ¢, which means 1 \ax (L) [|%[[5 + Ao [[x[|5 = const.
Constructlng a maJorlzmg function like this will bring conve-
nience to the minimization step.

2) Majorizing via a Diagonal Matrix: Here we propose an
alternative way of majorization, which is based on the fact that L
is both positive semidefinite and nonnegative. We can majorize
ch\:ll wray, |1 (X)|* + 1x/ Bx in another way by choosing a
different M matrix, cf. Lemma 7 below.

Lemma 7 ([6, Lemma 5], [26, Lemma 2]): Let L be a real
symmetric nonnegative matrix. Then, Diag (L1) = L.

With the help of Lemma 7, we can majorize E,y :711 wy;
ai [x"Upx[* + $x Bx in another way (continuing from (23)).
The key idea is to apply Lemma 4 with My =L and M =
Diag (L1).

Lemma 8: The expression fo:_ll wyay|x?Upx|? + §x
Bx is majorized by

H

fo(E ® (xxH)) X + XH(R -Eo® (XU)X(”H)) X-+const,

2
(32)
with R given in (28) and
N-1
E= Y  wa (N-k)U; (33)
k=1-N
Proof: See Appendix B for the detailed proof. |

We apply Lemma 4 again on x" (R —E ©® (x(OxDHY) x
withM = )\, I — \;Iwhere )\, and \; are chosen such that \,, >
Amax (R) and Xy < Ain (E © (xUx(D7)), respectively:

a (R -E0o (x(l)xU)H)) X

< (A= N) xTx
+2Re[x" (R~ E o (x"x1) (34)
— NI+ )\[I)XU)} + const
= A=) (Hng — 2Re [yfx]) + const.
where
y2 = (I+ EG(;\((([”);\(:)H)> xW — X )\Z RxV, (35)

To conclude, the second majorizing function we propose is

fo (x; x<l)> = le

L (B6 (o) x

O = N) (qug — 9Re [ygfx]) +const.  (36)

Remark 9: When the strict constant modulus constraint
is imposed, i.e., |z,| = ¢,, we have i) Ix(E® (xx))x
=TH((B © (o)) - (ex)) 2 4Tr(((ex) @ (T )=
217 E1=const where (a) Tr(A” (B ® C))=Tr((A" © B)
C), cf. [27, Ch. 3, Section VI, Theorem 7(a) i) [|x||3 = 2 =
Nez, and i) Apin(E© (xx7)) = ¢ \pin (Diag(x") /

m m

¢m) - E- Diag! (xm/cm)) = ¢, Amin (E). It will also bring

m
convenience to the minimization step.

B. A Majorizing Function for the ISL Metric

In particular, when p =2, and w; =1 for all k, f(x) =
A:f I (x)]?. We are going to propose a majorizing function
for this specific metric. We can easily obtain that
EXﬂﬂmﬁx“émﬂ>@£mwmm%&

(Uy) — vec (I) vec (I)] vec (X). For majorization, we also
need the following lemma.
Lemma 10: The following equation holds:

N-1 ;o2
H
v ec (Uy) vec (U;) = 2NZV€C (££7) vec” (££7)
k=1-N
(37)
where f; = [1,exp (jw; (2—1)),---,exp (jw; (N —1))]"
CVlandw; = 2% (i — 1) fori =1,2,--- ,2N.
From Lemma 10, we can get
(x) =N Z |fH |x|[5 - (38)

We observe that the first term is the summation of 4th power
(p=4), and we can follow the trick as is mentioned in
Section IV-A. First we apply Lemma 2:

1 & Ho 4
v O |67
i=1

where a; (> 0) and b; (<

1 2N ,
= W; (af £ x]" + b [£7x| +const),

(39)
0) follow the structure of a and b in

2 ero))

x} , we further have (leaving

Lemma 2, and the corresponding % is (Z

DI eq
GEQR
out the constant and scaling factor in (39))

With b; |£/x ]<bRe[

S (o 5 )
%
<2

(WH ¢
Hg gH Re | X2 gH
( a;x fif;"x + bRe |f,,;HX(l>|f;' x]) (40)

Gx+Re[ HHX]

where G = Y2 a;fif7 and H = 32" 7|ffH. A

second majorization is still needed (using Lemma 4):

(a)
x? Gx + Re [X(Z)HHX} < )\,UXHX
1
— 2Re |:XH (AUI -G - 2H) x(”] + const 41
) bii il (0
= \yx"x —2Re |x" (A, I—8S)x'"| + const

= )\1, ||x||2 —2)\,Re [ x| + const
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TABLE II
PROPOSED MAJORIZING FUNCTIONS

Majorizing Function Expression Intended Metric
f1 (x;x(D) L Amax (L) %15 + Ao %[5 — 2XuRe [y x] + const. WPISL
f2 (x;x() %xH (Eo (xxH)) x4+ (Au —Ap) (||x||§ — 2Re [yQHX]) + const. WPISL
f3 (x;x(1) -5 Lx|l3 + )‘“ ||xH2 ;‘](}Re [y4x] + const. ISL
where (a) Ay > Anax (G), (b) Cy, and X, = {XG(CN‘ x5 = cZ}ﬂ C1N (Cy, Cs optional).
Let’s look into the four cases one by one.
G lu- §:Gh e )HH
| | A. Fixed Energy Constraint Only (X = A1)
2N e (1) 2 ¢ el In this case, we adopt majorizing function f; (x;x() for
- z; 2|67 x ‘ ifi’ =8, 42) the WPISL metric, and f; (x;x)) for the ISL metric. Since
- Au, Ay > 0 and ||x||3 = ¢2, the minimizing problems in both
and (c) scenarios reduce to:
y3 =x() — /\1 Sx() (43) mini;nize —Re [yfx]
To conclude, the third majorizing function we propose is subject to ||x||3 = (46)
7 (x; X(l)) yi ( A, ||x||2 2\, Re [y? XD where j = 1, 3. The (update) solution is
Ce
. ==y, (47)
5 [Ix||5 + const. (44) 1 [l

Remark 11: The energy budget constraint ||x||5 = ¢? makes
two terms of fg (x; x(l)) constant.

For clarity, we summarize all the aforementioned majorizing
functions and their intended metrics in Table II.

Remark 12: We would like to provide more insight into the
quartic term of f; and f,. Let’s start from that of f;:

1
5 Amax (L) 1]l

2
%XH ()\max (L) XHX) X
;xH (Amax (L) - 117 ©x7x) x (45)

1
= §XH (mat (Amax (L)1) ® XHX) X,

where mat (L1) reshapes a length-N? vector into an N x N
matrix (reverse operation of vec(+)); now fg: from (73),
we know ix (E® (xx)) x = 1x/ (mat (L1) © (xx'))
X. Recall that when constructing fl, we choose M =

Amax (L)I = Diag(Apax (L)1) and f2, M = Diag (L1). Thus,
the quartic term of f; and f; can be unified as
#(Z ® (xx)) x where Z = mat (diag (M)).

V. MINIMIZATION SOLUTION DERIVATION

Now we move on to the minimization step. We should
carefully choose majorizing functions so that the minimiza-
tion solution can be easily obtained. In the following, we
would like to specify the general constraint set A in (15)
and discuss four sets of combinations of the constraints men-

tioned in Table I. They are: X} = {x € (CN’ ||X||2 =20 X =
[xecV|IxE=c}ncs, 2 = {xe Y| IxE =2} n

following the Cauchy-Schwartz inequality.

B. PAR Constraint With Fixed Energy (X = X»)

In this case, we adopt majorizing function f; (X x() ) for

the WPISL metric, and f; (x;x(")) for the ISL metric. The
minimizing problem is:

mini;nize —Re [y]Hx]

subjectto  ||x||3 = ¢ (48)

|z, | < ¢, Vn

where j = 1,3. The (update) solution is already given in [7,
Algorithm 2] by using the Karush—-Kuhn-Tucker (KKT) condi-
tion. The phases of x(! 1) follow those of y;- Denote the number
of nonzero elements of y; as M (< N), and the set containing
all the corresponding indexes as M. With ¢,/ VN < ¢,, this
problem always has a feasible solution.

* If Mc; < 2 < Ncj, the solution is:

2D ‘ Cp Vn e M, 49)
= c2—Mc?
NfA;p vn & M;
e |f cg <M CIZ), the solution is:
x40] = 81yl (50)

where 8 satisfies ||[3[y;]])" ||, = ce (-] denotes ele-

mentwise absolute value, [x]!

, means projecting x el-

ementwisely onto the interval [v,7]) . Observing that

hi (B) = H[ﬂ lyillyy ||2 is a strictly increasing function
on {0, m}, there is a unique (3 satisfying
hl (ﬁ):Cc~
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C. e-Uncertainty Constant Modulus Constraint With Fixed
Energy (X = Xj3)

In this case, we adopt majorizing function f; (x;x<l)) for
the WPISL metric, and f; (x;x(V)) for the ISL metric. The
minimizing problem is:

minimize — Re [y}'x]

subject to ||x||§ = (51)

Cm — €1 S |xn| S Cm +62a vn

where 7 = 1, 3. The (update) solution is analogous with the pre-
vious case. The phases of x(/*1) follow those of y;. M and M
follow the same definitions as above. The problem has a feasi-
ble solution if and only if N (¢, — €1)% < 2 < N (¢ + €2)°.
The solution of |x/*1) | is:

o If M(cp, +€)*+ (N —M)(en, —e)? <E<N(e, +
€2)?, The solution is:
Cm + €2 Vn € M,
(z+1>‘ _
Ty - c2—M (¢ 462 2 (52)
{ e lfental yn ¢ M;

o If N(cm - 61)2 S Cg S M(Cm"' 62)2+ (N - M)(crn -
€1)?, the solution is:

‘X““)‘ = [Bly;

where (3 satisfies ||[8]y;[]c" 7¢* |la = c.. Observing that

Cm —€1
ha (8) = l[Bly; 116, =&

Cpy —€]
n [ m
0 max, em{|yj.nl}’ mmnew{\%

isfying hy (8) = c..

]Cm +e€2
Cm —€1

(53)

|}} there is a unique 3 sat-

D. Strict Constant Modulus Constraint With Miscellaneous
Phase Constraints (X = Xy)

In this case, we adopt majorizing function fl (x x(! >) and
fo (x;x(”) for the WPISL metric, and f3 (x X )) for the ISL
metric. Some of the nontrivial issues in minimizing f; (X' x(”)
are 1) )\u _)\l > )\max (R) _>‘min (E G(X(”X(”H)) (i )\HldX
(R) — & Anin (E) @ 0 where (a) is due to Remark 9, and (b)
R [cf. (28)] and E [cf. (33)] are nonzero Hermitian matrices
with their diagonal entries being all zero (because wy = 0); 2)
3x" (E® (xx)) x = const, cf. Remark 9. The minimizing
problem is:

mini)[nize —Re [yJH x]

subject to (54)

|xn| = Cm, n
arg (z,) € ¢, Vn

where j = 1,2, 3, and ®,, is a phase constraint set for 2, which
will be specified later. The (update) solution is expressed ele-
mentwisely: Vn,

(I+1)

x, = ¢y exp (Jon) (55)

with
® (4, Cs neither included, @, = [0,27), ¢, = arg (y;»);
e (yincluded, ®, = {¢1,¢2,- - ,¢r}, v, = arg ming,,
(I¢i —arg (yj.0)]);

¢ 05 inCIuded’ q)" = [’7’” » Tn + 19]» Pn = [arg (yj,n)]ﬁ/” 0

Tn

VI. CONNECTIONS WITH GRADIENT PROJECTION METHOD

In this section, we are going to show the connections with the
gradient projection method. A gradient projection step takes the
following format:

x(+1) = p, (X(” — [stepsize] - V f (X)) 5 (56)

where the notation Py denotes projection onto X'. The gradient
of the WPISL metric f (x) = ZQ:_II w, |xH ka|p is given by

Vi)

with R given in (28), and that of the ISL metric f (x)=
Z |xH ka|

= Rx, (57)

1
Vfx)= WSX(Z) —2x0, (58)
with S given in (42). We will relate the gradient projection step
to our MM methods. Let’s start from the following theorem.
Theorem 13: The solution of the following problem can be

expressed as Py (y):

minimize  — Re [y x]
subjectto x € X, (59)
where X is given in (15). For all ¢ > 0, Px (cy) = Px (y)

holds. In particular, when ¥ = X = {x € (CN‘ HxH% = cz} N
C1 N (Cy, C;5 optional), Py (c ©@y) = Px (y) holds with ¢ =
[e1,co, - ,cN}T elementwise positive.
Proof: See Appendix C for the detailed proof. |
When we minimize the majorizing function f; (x; X(l)), the
minimization solution is given as

xD = Py (y1)
= P ((1+ 2@ 0 [}) x - £ Rx) (60)
=P —WW( ))-

When we minimize the majorizing function f, (x;x(V)) over
X = X, the minimization solution is

(I+1) _ PX (}’2)
R-Eo(xx(OH
=Py ((I— )\( N )>x<l))
o (l) Ef) (1)
=P (X VS () )
— pTQYI (]) —
=P ((1+ x5y BL) ox) - ( ")
(@) ) _ <l>
—PX(X v (1 =y E) @Vf

( 1y

. . . 1.
where (a) A, — \; > 0, E is a nonnegative matrix, and (-)" is
an elementwise inverse operator. When we minimize majorizing
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function f3 (x; x () ) , the minimization solution is
X(l+1) =Py (yg)
=Px ((1-18)x")

< 0
= Px (x(l) — 3—1\] (Vf (x“)) + czx(l))) (62)

@ Px (X(l) A, —4Ne2 —4N(’2 v/ ( )) ,

where (a) A\, > 4N¢c? and the proof is given in Appendix D.

It is very explicit that Py (y1) and Py (y3) have the same
structure as the update step of the gradient projection method,
but Py (y2) is different because a diagonal matrix is used during
the construction of the majorizing function f,. Basically, it is
a tradeoff between two concerns. The first is the simplicity of
the minimization problem after majorization (we want closed-
form solutions) and the second is the goodness of the majorizing
function when it is used to approximate the original objective
function. Depending on the constraint set, sometimes we can
only use majorizing functions of the forms of f; and f3 to get
a closed-form solution in each iteration, and for some other
constraint sets we may choose the majorizing function f, which
admits a closed-form solution in each iteration and at same time
approximates the original objective better.

In addition, when we adopt the MM method, the update solu-
tion of projection on a nonconvex set has convergence guaran-
tee, which results from the nature of the MM method. Moreover,
the MM method proves to be superior in terms of convergence
speed judging from the simulation results in the simulation sec-
tion. This is because the MM step size is automatically computed
from the majorizing function and it is adaptively changing, while
for the traditional gradient projection method, some backtrack-
ing line search strategy needs to be used.

VII. ALGORITHMIC IMPLEMENTATION

In this section, we will look into the algorithmic implementa-
tion. We observe that all the minimization solutions are closely
related to y;’s (j = 1,2, 3), and thus we need to compute them
efficiently to reduce complexity and save CPU time.

A. Computation of y
The expression of y; is (1—|— /\”‘X ||x H ) o —

+Rx®, and we need to compute A ax (L), Ay, and

Rx. Firstly, according to [6, Lemma 2], Amax (L) =
maxy, {wrar, (N — k) |k =1,2,--- , N — 1}, which s of com-
plexity O (N).! Then, we compute A\, > Ayax (R) where R
[cf. (28)] is a Toeplitz matrix. The value A\, follows that in [6,
Lemma 3]. The computation process needs 3 FFT(IFFT) oper-
ations. In particular, for the ISL metric, only 1 FFT operation
is needed. Lastly, we compute Rx"). This process addition-
ally requires 1 IFFT. All the relevant details are elaborated in
Appendix E.

IThe computation of aj’s is not counted for the moment. The a;’s are
readily computed with (78) and (79) since they are functions of autocorrelations
e (x0).
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Claim 14: The overall process of computing y; takes
4 FFT(IFFT) for WPISL metric and 2 FFT(IFFT) for the ISL
metric, which is of complexity O (N log N).

B. Computation of y»

(x5 H
The expression of yy is <I+}3C(>\/\)) x(1) —
u — N\

#)\Rx(l), and we need to compute \,, ), Rx("), and
(E ® (xU)x(l)H)) x(1) . With the previous subsection, we still
have to additionally compute ; and (E ® (x(Vx(#))x(1).
Because f> (x; x( )) is only used when each element of x() has
strict constant modulus ¢,,, we can take advantage of this ex-
tra property. Firstly, we compute A; < Ay (E © (x(Vx(D#
where E [cf. (33)] is a Toeplitz matrix. The value \; follows that
in [6, Lemma 3]. The computation process needs 1 FFT(IFFT)
operations. Then, we compute (E ® (x(Vx(V#)) x(D. Only 1
additional IFFT is needed per iteration. In particular, for the
ISL metric, no additional FFT(IFFT) operation is needed. The
details are elaborated in Appendix F.

Claim 15: The overall process of computing y, takes 6
FFT(FFT) for WPISL metric and 2 FFT(IFFT) for the ISL
metric, which is of complexity O (N log N).

C. Computation of y3
The expression of y3 is x(/) — )\—Sx , and we need to com-

pute )\, and Sx (. Firstly, we compute \, > Ay (G) where
G = ZL 1 aif; fz»H is also a Toeplitz matrix. The value A\, can
also be derived from [6, Lemma 3]. The computation complex-
ity of A, is O (). Then, we compute Sx(") where S is in (42).
This process requires 2 FFT(IFFT). The details are elaborated
in Appendix G.

Claim 16: The overall process of computing ys takes
2 FFT(IFFT) for the ISL metric, which is of complexity
O (NlogN).

VIII. NUMERICAL SIMULATIONS

We give some numerical results in this section. All exper-
iments were performed on a PC with a 3.20 GHz i5-4570
CPU and 8GB RAM. We would like to specify the unified
WPISL metric to be the ISL, WISL, and PSL to compare
the performance with various benchmarks and the gradient
projection method (if applicable). The Armijo step size rule
is used to implement the gradient projection method. We
initialize the algorithms with either a random sequence in
the constraint set or some known sequence (Frank, Golomb,
etc.). Since we are working on a nonconvex problem, initial-
ization does affect the performance. Empirically, initiating
from an existing sequence endowed with low autocorrelation
sidelobes could reach good performance. However, random
initialization may not do as well. The stopping criterion is:
|[WPISL (x("*1) — WPISL (x(V)| / max (1, WPISL (x(V))
< Tol, where Tol is the tolerant precision. In case the stopping
criterion is too harsh, we set the maximum number of iterations
to be MaxIter.

A. ISL Minimization

Set p = 2, wy = 1, Vk, and we get the ISL metric. The first
experlment is to present the ISL values or the merit factors

(MF = QISL) of different algorithms under different sequence
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Fig. 1. ISL value versus iterations.
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Fig. 2. Merit factor versus sequence length.

lengths: N = 2°,20 ... 213 The constraint set is (strict) uni-
modular constraint: X = {x € CV||z,| =1, Vn}. For the

proposed MM-based algorithm, we have 6 choices: majoriz-
ing functions fi, fo, f3 with 2 acceleration techniques. The
benchmark is the CAN algorithm, and the gradient projection
method is applicable here. The initial sequence is the Golomb
sequence, Tol = 1078, and MaxIter = 5 x 10*. In Fig. 1, we
show the convergence property of different algorithms. All the
algorithms display a monotonic decreasing property, and the
SQUAREM-accelerated MM algorithms converge the fastest.
Next, we would present the results of merit factor and we
additionally add a benchmark from a recent radar paper [28]. The
authors provide an algorithm for designing space-time trans-
mit code and receive filter. The algorithm alternately optimizes
transmit code and receive filter, but it lacks theoretical guaran-
tee for monotonic property and stationarity convergence though
empirical convergence is observed. In Fig. 2, we see a significant
increase at all sequence lengths in merit factor except the radar
benchmark if the algorithms are initialized by some known se-
quence. Both the MM-based algorithms and CAN can achieve
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Fig. 3. Correlation level of two sequences: N = 256 and N = 4096.
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Fig. 4. Average running time versus sequence length.

high merit factor, and thus they are equally good. To see the
sequence correlation level, we plot two examples from the first
experiment in Fig. 3 (correlation level = 201log, |ry /ro|, k =
1—N,---,N —1.). The radar benchmark only has four data
points due to its prohibitive computational cost, as will be shown
later.

The second experiment is to present the average running
time of different algorithms under different sequence lengths:
N = 2°,26 ... 213 The initial sequence is a random unimod-
ular sequence and we repeat 100 times to compute the average
running time. Tol = 1078, and MaxIter = 3 x 10*. The gradi-
ent projection method is implemented with the Armijo step size
rule. The radar benchmark is required to initialize with some spe-
cific sequence, so only one realization is carried out. In Fig. 4,
we see that the radar benchmark always takes the most CPU
time and the consumption goes up to 10 when the sequence
length is merely 256, which reflects a prohibitive computational
cost in this algorithm. Also, the time consumption may not
increase with the sequence length, and this is because it takes
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Fig. 5. ISL under different modulus constraints versus iterations.
many more iterations for the N = 2° case to converge than the
N = 25 case. The gradient projection method takes the second
most CPU time, which is 1-2 orders of magnitude slower than
the CAN and MM methods. Some of the MM-based algorithms,
i.e., those accelerated by SQUAREM, are faster than the existing
CAN algorithm.

Remark 17: Up to this point, we have done the comparison
of our proposed algorithms and the methods in [5], [6]. It can be
checked that the first two proposed majorizing functions (f; and
f2) are variants of [5], [6], with [5] proposing f; only and [6]
proposing both. However, the third majorizing function (f3) is
newly proposed and not mentioned in [5], [6]. The comparison
is elaborated in Figs. 1, 2, and 4. As can be seen in Figs. 1 and
2, the ISL level achieved by fs is as good as that from f; and
f_g, which indicates that we can get as good results as [5], [6].
Moreover, in Fig. 4, we observe that the convergence speed of
f3 is the fastest, 2—4 times as fast as [5] (proposing only f1)
and 2-6 times as fast as [6] (proposing f; and f>). In terms
of time consumption, we can achieve even better results than
(51, [6].

The third experiment is to show the ISL under miscella-
neous constraints, i.e., modulus constraints and phase con-
straints. In terms of modulus constraints, we have three
different types: strict constant modulus constraint (|x,| =
Cm ), €e-uncertainty constant modulus constraint (¢, —€; <
|z,| < e 4 €2), and PAR constraint (|x,]| < ¢,). We set
N =256, ¢,, =1, g =es =¢, and ¢, =¢,, + €2 =1+e€
We use MM-based algorithm to compute the ISL, using ma-
jorizing function f; and SQUAREM acceleration. The initial
sequence is the Golomb sequence, Tol = —10~% (stopping
criterion is deactivated), and MaxIter = 5 x 10%. In Fig. 5,
we relax the unimodular constraint gradually as shown, and
there is remarkable ISL decrease even if the constraint set
is relaxed a little bit. In terms of phase constraints, we
also have three different types: no phase constraint, dis-
crete phase constraint (arg(x,) € {¢1, 2, - ,dr}), simi-
larity constraint (arg (x,) € [yn, v + 9], v = arg (x,n) —
arccos (1 — 6%/2),and ¥ = 2arccos (1 — §%/2)). Note that all
the phase constraints are accompanied by the strict constant
modulus constraint. We set N = 256, ¢, = 1, ¢; = 2& (i—1),

T
t=1,---,I, and the reference sequence x, is the Golomb
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Fig. 6. ISL under different phase constraints versus iterations.
sequence. The MM-based algorithm is based on majorizing
function f; and local majorization acceleration. The initial se-
quence is the Golomb sequence, Tol = —10~%, and MaxIter =
1.5 x 10%. In Fig. 6, we tightened the unimodular constraint
gradually as shown, and we observe an increase in ISL. Anal-
ogous result can be achieved when we optimize under other
metrics (WISL and PSL), and thus we do not replicate.

B. WISL Minimization

Setp = 2 only, and we get the WISL metric. We do one exper-
iment is to present the convergence speed of different algorithms
under N = 100. The weight is

wk{l ke{l,--- 20} U{51,---,70}

0 otherwise, (63)

such that only 7 ~ r9¢ and 751 ~ 770 have small correlations.
The constraint set is unimodular constraint. For the proposed
MM-based algorithm, we have 4 choices: majorizing functions
fi, fo with 2 acceleration techniques. The benchmark is the
WeCAN algorithm, and the gradient projection method is ap-
plicable here. The initial sequence is a random unimodular se-
quence, Tol = 107!%, and MaxIter = 10°. In Fig. 7, we show
the monotonic decreasing property plotting WISL versus itera-
tions. In Fig. 8, we see that all the algorithms can achieve WISL
down to 10719, but all the MM-based algorithms are much faster
than the gradient projection method and the existing WeCAN
algorithm. To see the sequence correlation level, we refer to
Fig. 9 to see one example of the converged sequence. We see
that the designed sequences have low autocorrelation sidelobes
at the required lags.

C. PSL Minimization

Set p to be large, w, = 1, Vk, and we approximately get
the PSL metric. The first experiment is to present the PSL
of different algorithms under different sequence lengths: N =
102,202, 40%,60%,80%,100%. We set p = 100. The constraint
set is unimodular constraint. For the proposed MM-based al-
gorithm, we have 4 choices: majorizing functions f;, f, with 2
acceleration techniques. We do not have benchmarks here and



ZHAO et al.: UNIFIED FRAMEWORK FOR LOW AUTOCORRELATION SEQUENCE DESIGN VIA MAJORIZATION-MINIMIZATION 449

107 H s : : - 4

Weighted Integrated sidelobe level (WISL)

—6— WeCAN
—©— Gradient Projection
_20|| ——f,, SQUAREM :
—A— f,, Local Majorization :
— f2, SQUAREM
—aA— f,, Local Majorization : : :
T L L L L
10° 10
Iteration

Fig. 7.

Weighted ISL versus iterations.

T
—6— WeCAN
—&— Gradient Projection H
——f,, SQUAREM

—4A— f,, Local Majorization
—5— f,, SQUAREM
—A— f2, Local Majorization 1

Weighted Integrated sidelobe level (WISL)

! !
900 1200 1500

0
CPU time [sec]

Fig. 8. Weighted ISL versus CPU time.
0

~100 1
8
°
3
s -150 q
g
e
S
o

200 —

250 J

300 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

—100 -80 60  -40 20 0 20 40 60 80 100
K
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Fig. 10.  PSL value versus iterations.
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Fig. 11.  PSL versus sequence length. (G): initialized by the Golomb sequence,
and (F): initialized by the Frank sequence.

the gradient projection method is not applicable because of the
numerical issue caused by large value of p. The initial sequences
are the Golomb sequence and the Frank sequence, Tol = 107!,
and MaxIter = 2 x 10°.In Fig. 10, we show the monotonic de-
creasing property plotting PSL versus iterations when N = 400
and the initial sequence is the Frank sequence. In Fig. 11, we
see a significant decrease in PSL if the algorithm is initialized
by some known sequence.

The second experiment is to present the convergence speed
of different values of p: p = 10,10%,10°, 10*. The initial se-
quence is the Frank sequence, N = 400, Tol = —1071Y, and
MaxIter = 5 x 10*. In Fig. 12, we see that when p is small
(p = 10), the convergence speed is fast, but the converged PSL
is high; when p is large (p = 10000), the situation is right the
opposite. Therefore, we can adopt an increasing scheme of p
to get low PSL and fast convergence speed. We increase p as
2,22, ..., 213 The initial sequence is the Frank sequence with
N = 1002, Tol = 10’5/p for each p, and MaxIter = 5 x 103,
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Fig. 12. PSL versus iterations (majorizing function: fi, accelerated by
SQUAREM).
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Fig. 13.  Correlation level of the Frank and designed sequence (majorizing
function: f;, accelerated by SQUAREM).

We plot the sequence correlation level in Fig. 13 compared with
the initial Frank sequence. The autocorrelation sidelobes of the
Frank sequence become larger for k close to 0 and N — 1, while
those of the designed sequence are much more uniform across
all lags.

D. Metric Comparison: ISL and PSL

In this subsection, we compare the results of different met-
rics, and we focus on ISL and PSL. The designed sequence
is unimodular. Note that it is not a good idea to optimize the
weighted sum of ISL and PSL because in this case the pth order
term in PSL will dominate the objective, implicitly suppress-
ing the effect of the ISL term. If we want to achieve a tradeoff
between ISL and PSL, we may as well tune the order parame-
ter p. In Fig. 14, we plot the optimized ISL and PSL value with
respect to different p, ranging from 2 to 128. The initial sequence
is chosen as the Frank sequence, N = 256, Tol = 1071, and
MaxIter = 3 x 10?. The majorizing function is chosen as fi,
accelerated by SQUAREM. The best tradeoff is achieved when
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Fig. 14.  (Optimized) ISL and PSL levels versus order parameter p.

p lies between 8 and 16, where the level of PSL is already low
enough and that of ISL is still not too high.

IX. CONCLUSION

We have proposed a unified framework to design low auto-
correlation sequences. We have optimized a unified metric over
a general constraint set. We have carried out the MM method
in two stages. In the majorizing function construction stage,
we have constructed three majorizing functions. Two of them
apply to the unified WPISL metric, and the remaining one ap-
plies to the specific ISL metric. In the minimization solution
derivation stage, we have provided closed-form solutions to dif-
ferent minimization problems. Additionally, we have shown the
connections between the MM and gradient projection method
under our algorithmic scheme. Thereafter, we efficiently im-
plement the MM step with FFT (IFFT) operations. Numerical
simulations have shown that the proposed MM-based algorithms
converge faster than the traditional gradient projection method
and the state-of-the-art algorithms.

APPENDIX A
PROOF OF LEMMA 5

Proof: We apply Lemma 4 with My =L and M =
Amax (L)1, obtaining (constant terms are represented with
const for simplicity)

1
ivecH (X) - L - vec (X)
1
< §>\max (L) vecH (X) vec (X) + Re [vecH (X(l>) - (64)
(L — A (L) T) vec (X) ] + const.
Now we recover X and X (V) as xx and x(Vx(DF respectively:
— 2 1
Z Wi, G |XHka| S iAmax (L) ||X||3
P (65)

+xH (A — Amax (L) xmx(l)H) x + const,
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where A is defined as

N-1
Z Wk QT ) (x(l)) U, = A",

k=1-N

(66)

We add 1x Bx to (65):

=

-1
1 1 ,
wray, |1y (X)|2 + §XHBX < 5)‘max (L) HX”;

1

>~
Il

+xH (A + %B — Amax (L) x(l)x(l)H> X + const, (67)

where A + %B can be further simplified [cf. (66) and (24)]:

N-1

1
A+ Z-B= E ’ b (ORR 8]
+ 90 = E N’wk (ak+2|ukf(kxm)|>r,k (X ) k

ol (O aa, ey (D
= 2wt () v,
k=1-N
N-1 b2
= gwk ’rk (X(”)‘ T_k ( (l)> Uk R (68)
k=1-N
|
APPENDIX B
PROOF OF LEMMA 8
Proof: We start from the following:
1
§V€CH (X) - L - vec (X)
1
<= 5V A (X) Diag (L1) vec (X) + Re [VecH (X(Z)) - (69)
(L — Diag (L1)) vec (X)} -+ const.
Then we recover X and X (V) as xx andx(Vx(W ¥ respectively.
We do this term by term:
ivecH (X) Diag (L1) vec (X)
L w
= gvec (X) ((L1) ® vec (X))
a) 1
W §Tr (xx" mat ((L1) ® vec (X))) (70
L g H
= 5X (mat (L1) ® (xx")) x
1
® 37X (Bo (o)) x,
Re [vecH (X“)) Lvec (X)] — x7 Ax, 1)
Re [VecH (X(Z)> Diag (L1) vec (X)}
© xH (E ® (x(l)xU)H)) X (72)

where (a) mat(-) is the inverse operation of vec(-), (b)

E W A VeC

E = mat (L1) mat(
k=1-N

U ;) vec (U ) 1)

N-1
—mat< Z wiay (N —|k|)vec(U_k)>
k

=1-N
N-1
= wyar (N — |k|) U_ = EX, (73)
k=1-N
and (c) follow (70). Therefore,
N-1
Z Wy ay, |XHUkX|2 < %XH (E O] (XXH)) X
k=1
a (A —-EO® (x“)x(l)H)) X + const. (74)

We add ;x" Bx to (74):

Zwkak|7"k \—|— xHBx<;x (E@(XXH))X

a (R —E0® (x“)x(l)H)) X + const. (75)

APPENDIX C
PROOF OF THEOREM 13

Proof: The problem (59) is equivalent to the following one

due to the blanket constraint ||x||; = ¢2:

I 1 2
minimize 3 Ix -yl
subject to xe kX, (76)
which can be interpreted as a projection problem.
Judging from (59), it is obvious that Py (cy) = Px (y)

for ¢>0. When X =X, we
{x € CN‘ |z, | = em, arg (x,) € (I>n7Vn} where @, is a

simplify it as Xy =

phase constraint set for x,,. We express Py (y) elementwisely
as [PX (Y)]n = Cm €XP (j%pn (yn»’ vn.

e (4, C5 neither included, ®,,=[0,27), @, (y,)=arg(y,)
= arg(c,yn) = ©n(Cuyn), thus [Py (y], = [Px(Diag(c)
Y)lns

¢ (jincluded, Q, = {¢1; d)Za T ¢I}7 Pn (yn,) = argmin{@}
(|¢7 - arg(yn)D = arg min{(b, }(|¢7 - arg(cnyﬂN) = ©n
(¢uyn ), thus [Px(y)]n = [Px(Diag(c)y)]n;

e (5included, @, = [V, v + 9], ©n(yn) = [arg(y,)
]:;/:'-Hg ) [arg(cnyn)] 1t =y (cnyn), thus [Px(y)]n =
[Px(Diag(c)y)]n-

Therefore, Py (c®y)=Px (y) for any c elementwise
positive. |

APPENDIX D

PROOF OF THE CLAIM ), > 4N¢?
Proof: The proof is given as follows: A, =1
2N

(max;<j<n2Nag;+maxi<j<y2Nag;i 1) > 21 1@ =D
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j4—f[[x([) 474 fﬂx(l) 3 ,f—f,.”x(” . _ 2N

If; ‘(iz—\‘f:Hx(lHl)?( If; ) with fz(Zi:l ‘fin(l) ‘4)1/4.

zt—|fH x (D)1= x(D 3 (z—|£H x()
We know that 2= U‘zjj‘zgx(;”l;z( 87 =0 3IExD 2 4
2t x|z 4+ 22 > 3|7 xD|2 + 22, Also, == (320 |£H
y 2N
x4 > (2N (e S5 B0 )12 = (2N) e,
Then, A, > 332N [f7x(D|2 4+ 2N V2N2=(6N+2NV/2N)
2 > 4Nc2. |
APPENDIX E

COMPUTATION PROCESS OF A, AND Rx(!)

From [29] and [6, Lemma 3], we see that in order to sat-
isfy Ay > Amax(R), A, can be chosen as (max; <<y po; +
max|<;<ypoi_1) Wwith pu=Fc where FecC>V*2VN s a
2N —DFT matrix with F,,,, = exp(—j 21y 1 < .

IN
n < 2N, and c = [¢g, 1, ,CQN,I]T with
0 k=0,N
2oy IxWHU, xD [P 2.
o = g [x 0 Ux | k=1, ,N—1
(xDH U, xD)
o k=N+1,---,2N — 1.
(77)

In short, g can be computed as pu = FFT (c). Moreover,
the vector ¢ can also be computed with FFT. We define r =

[ro (x0) 7y (x@) oo ey (x0) 0,05 (xD) -+

r] (x(l)) ]T. Since r is comprised of the autocorrelations of
x(D, it can be efficiently computed via FFT:
r = IFFT (\t\Q), (78)
where
T
t = FFT <[ T OMJ > (79)

and |-|” denotes the elementwise absolute value to the pth power.
Here we need 1 FFT and 1 IFFT. Knowing r, we can compute
c with simple Hadamard product:

p

c=5wWo it or, (80)
where w = [0,wy, - ,wy_1,0,wy_1," - ,wl]T, of com-
plexity O (N). To sum up, the computation process is:

t = FFT ([ (T OM]T)
r = [FFT (|t|2)

p= FFT(2w®|r|p 2@1’) 81)

1
)‘u = 5 (121%]\ X [o; + 1213}( 24— 1)
3 FFT(FFT) operations. When p = 2 and w;, = 1, Vk, i.e., for
the ISL metric, we have g = [t|* and only 1 FFT operation is
needed.

The Toeplitz matrix can be expressed as R =

L Ff[mr Diag (u) F. 1.n (F. 1. stands for the first N columns

2N
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of F, the 2N —DFT matrix). Then,

<

1
—FDiag (u) F |:ON 1” (82)
x 1:N

Rx() =
* IN

= [IFFT (1 © t)];. »

where [-],.,, means taking the first V elements of a vector, and
t follows (79). Here we additionally need 1 IFFT.

APPENDIX F

COMPUTATION PROCESS OF \; AND (E © (x(x(DH))x()
We have A\pin (E © (xWx(DH)) = 2 \in (E), cf. Remark

9. From [29] and [6, Lemma 3], we see that in order to sat-
isfy A\; < &2, Auin(E), N is set to be ¢, - %(minlgigj\]l/m‘ +

ming<;<y ;1) where v = Fu, F is the 2N —DFT matrix,

and u = [UO,Uh'-' ,’U,QJ\],l]T with
0 k=0, N
U = wkak(N—|k|) k:].,'",N—]. (83)
U N —k; k=N+1,--- 2N —1.

In short, v can be computed as v = FFT (u).

Next, we observe (E ® (x(l)x(l)H)) x() = Diag (x(”) -E-
Diag"” (x() x() = ¢2, (E1) ® x(V), where E1 can also be im-
plemented with FFT:

Inx1
On 1 1:N

[IFFT (u © FFT ([ﬂrxl,om] ))LA .

E1l

—FHD F
P/ Diag (1)

(84)

Since FFT ([1§X1,0§X1]T
so only 1 additional IFFT is needed per iteration. When p = 2
and w;, = 1, Vk, i.e., the ISL metric, u is a constant vector
(ar = 1, Vk), and thus v and E1 are both constant vectors,
which means no additional FFT(IFFT) operation is needed.

) only needs to be computed once,

APPENDIX G
COMPUTATION PROCESS OF A\, AND Sx ()

We understand that G = Y7 aififff = ;L FH | Diag
(2Na)F. ;.. Following [29] and [6, Lemma 3] /\7,, is set to
be N (maxi<;<y ag; + maxj<;<y as;_1), which is of complex-
ity O (N).

Then, we compute Sx(’), where S= Z N |21 x( |

fiff = - F yDiag(2NV)F. 1.y and v—2|FFT([ T
o% . 17 )\2 2|1:|2 (t [cf. (79)]). So 1 FFT for computing t

is needed. Thus,

Sx()

1 <
—F"Diag (2Nv)F
|:2N lag( V) |:0N><1 1:N

= [IFFT (2Nv & t)];.x (85)

v=2[t|*

2y N [IFFT (|t|2 © t)}
1:N

Here comes 1 IFFT.
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